Bkd-Tree: A Dynamic Scalable kd-Tree

Octavian Procopiuc! *, Pankaj K. Agarwal® **,
Lars Arge! ***, and Jeffrey Scott Vitter?

! Department of Computer Science, Duke University
Durham, NC 27708, USA
{tavi,pankaj,large}@cs.duke.edu
2 Department of Computer Science, Purdue University
West Lafayette, IN 47907 USA
jsv@purdue.edu

Abstract. In this paper we propose a new index structure, called the
Bkd-tree, for indexing large multi-dimensional point data sets. The Bkd-
tree is an I/O-efficient dynamic data structure based on the kd-tree.
We present the results of an extensive experimental study showing that
unlike previous attempts on making external versions of the kd-tree dy-
namic, the Bkd-tree maintains its high space utilization and excellent
query and update performance regardless of the number of updates per-
formed on it.

1 Introduction

The problem of indexing multi-dimensional point data sets arises in many appli-
cations and has been extensively studied. Numerous structures have been devel-
oped, highlighting the difficulty of optimizing multiple interrelated requirements
that such multi-dimensional indexes must satisfy. More precisely, an efficient in-
dex must have high space utilization and be able to process queries fast, and
these two properties should be maintained under a significant load of updates.
At the same time, updates must also be processed quickly, which means that

* Supported by the National Science Foundation through research grant EIA-
9870734 and by the Army Research Office through MURI grant DAAHO04-96—
1-0013. Part of this work was done while visiting BRICS, University of Aarhus,
Denmark.

** Supported by Army Research Office MURI grant DAAH04-96-1-0013, by a Sloan
fellowship, by NSF grants ITR-333-1050, EIA-9870724 and CCR-9732787 and by
a grant from the U.S.-Israeli Binational Science Foundation.

*** Supported in part by the National Science Foundation through ESS grant ETA-
9870734, RI grant EIA-9972879 and CAREER grant CCR-9984099. Part of this
work was done while visiting BRICS, University of Aarhus, Denmark.

T Supported in part by the National Science Foundation through research grants
CCR~9877133 and EIA-9870734 and by the Army Research Office through MURI
grant DAAH04-96-1-0013. Part of this work was done while visiting BRICS, Uni-
versity of Aarhus, Denmark. Part of this work was done while at Duke University.

T. Hadzilacos et al. (Eds.): SSTD 2003, LNCS 2750, pp. 46-65, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Bkd-Tree: A Dynamic Scalable kd-Tree 47

the structure should change as little as possible during insertions and deletions.
This makes it hard to maintain good space utilization and query performance
over time. Consequently, the quality of most indexing structures deteriorates as
a large number of updates are performed on them, and the problem of handling
massive update loads while maintaining high space utilization and low query
response time has been recognized as an important research problem [9].

In this paper we propose a new data structure, called the Bkd-tree, that
maintains its high space utilization and excellent query and update performance
regardless of the number of updates performed on it. The Bkd-tree is based
on a well-known extensions of the kd-tree, called the K-D-B-tree [22], and on
the so-called logarithmic method for making a static structure dynamic. As we
show through extensive experimental studies, the Bkd-tree is able to achieve
the almost 100% space utilization and the fast query processing of a static K-
D-B-tree. However, unlike the K-D-B-tree, these properties are maintained over
massive updates.

Previous Results. One of the most fundamental queries in spatial databases is the
orthogonal range query or window query. In two dimensions a window query is an
axis-aligned rectangle and the objective is to find all points in the database inside
the rectangle. Numerous practically efficient multi-dimensional point indexing
structures supporting window queries have been proposed, most of which can
also answer a host of other query types. They include K-D-B-trees [22], hB-
trees [18, 10], and R-trees [13, 6]. If N is the total number of points and B is the
number of points that fit in a disk block, 2(1/N/B + K/B) is the theoretical
lower bound on the number of I/Os needed by a linear space index to answer
a window query [15]. Here K is the number of points in the query rectangle. In
practice, the above indexing structures often answer queries in much fewer I/Os.
However, their query performance can seriously deteriorate after a large number
of updates. Recently, a number of linear space structures with guaranteed worst-
case efficient query and update performance have been developed (see e.g. [5, 15,
12]). The so-called cross-trees [12] and O-trees [15] answer window queries in the
optimal number of 1/Os and can be updated, theoretically, in O(logg N) 1/Os,
but they are of limited practical interest because a theoretical analysis shows
that their average query performance is close to the worst-case performance. See
e.g. [11, 3] for more complete surveys of multi-dimensional indexing structures.
While some of the above indexing structures are specifically designed for external
memory, many of them are adaptations of structures designed for main memory.
In this paper we only focus on external memory adaptations of the original main
memory kd-tree proposed by Bentley [7] (see also [23]).

External-Memory Dynamic kd-Trees. While static versions of the kd-tree have
been shown to have excellent query performance in many practical situations, an
efficient dynamic version has proven hard to develop. In the following, we give
a brief overview of the internal memory kd-tree structure and then discuss the
two most important previous approaches for obtaining external memory dynamic
kd-trees. In two dimensions, the kd-tree consists of a height [log, N| binary tree

48 Octavian Procopiuc et al.

representing a recursive decomposition of the plane by means of axis-orthogonal
lines partitioning the point set into two equal subsets.! On even levels the line
is orthogonal to the z-axis, while on odd levels it is orthogonal to the y-axis.
The data points themselves are stored in the leaves, which form a partition of
the plane into disjoint rectangular regions containing one point each. In the
worst case a window query on a kd-tree requires O(v/N + K) time [16], but
average case analysis [24] and experiments have shown that in practice it often
performs much better. One way of performing an insertion on a kd-tree is to
first search down the tree for the leaf corresponding to the rectangle containing
the point, and then split this leaf into two in order to accommodate the new
point. While this insertion procedure runs efficiently in O(logy, N) time, the
kd-tree can grow increasingly unbalanced when many insertions are performed,
resulting in deteriorating query performance. In fact, the resulting tree is no
longer a kd-tree, since the lines in the internal nodes no longer partition the
points into equal sized sets. Unfortunately, while many other tree structures can
be rebalanced efficiently in time proportional to the root-to-leaf path, it can be
shown that in order to rebalance a kd-tree after an insertion, we may need to
reorganize large parts of the tree [23]. Thus it seems hard to efficiently support
insertions while at the same time maintaining good query performance. These
considerations show that the kd-tree is mainly a static data structure with very
good window query performance.

One main issue in adapting the kd-tree to external memory is how to assign
nodes to disk blocks in order to obtain good space utilization (use close to N/B
disk blocks) and good I/O query performance. In the first external memory
adaptation of the kd-tree, called the K-D-B-tree [22], the kd-tree is organized
as a BT-tree. More precisely, a K-D-B-tree is a multi-way tree with all leaves
on the same level. Each internal node v corresponds to a rectangular region and
the children of v define a disjoint partition of that region obtained using a kd-
tree partitioning scheme. The points are stored in the leaves of the tree, and
each leaf and internal node is stored in one disk block. Like a kd-tree, a K-D-B
tree can be bulk loaded such that it exhibits excellent space utilization (uses
close to N/B blocks) and answers queries I/O-efficiently (worst case optimally
in O(y/N/B + K/B) but often much better in practice). Unfortunately, it also
exhibits the kd-tree insertion characteristics. To insert a point into a K-D-B-
tree, a root-to-leaf path is followed in [logz(N/B)] I/Os and after inserting the
point in a leaf, the leaf and possibly other nodes on the path are split just like in
a BT-tree. However, unlike the BT-tree but similar to the kd-tree, the split of an
internal node v may result in the need for splits of several of the subtrees rooted
at v’s children—refer to Figure 1. As a result, updates can be very inefficient
and, maybe more importantly, the space utilization can decrease dramatically
since the split process may generate many near empty leaves [22].

Following the K-D-B-tree, several other adaptations of the kd-tree to external
memory have been proposed. An important breakthrough came with the result

! For simplicity we only consider two-dimensional kd-trees in this paper. However, all
our results work in d dimensions.

Bkd-Tree: A Dynamic Scalable kd-Tree 49

Fig. 1. Splitting a K-D-B-tree node. The outer rectangle corresponds to a node v
being split. The darker regions correspond to children that need to be split
recursively when v splits

of Lomet and Salzberg [18]. Their structure, called the hB-tree (holey brick tree),
significantly improved the update performance over the K-D-B-tree. The better
performance was obtained by only splitting nodes on one root-to-leaf path after
an insertion. However, to be able to do so, the definition of internal nodes had
to be changed so that they no longer corresponded to simple rectangles, but
instead to rectangles from which smaller rectangles have been removed (holey
bricks). The hB-tree update algorithm is theoretically efficient, although quite
complicated. As we show in our experimental results, the hB-tree can still suffer
from degenerating space utilization, although to a smaller extent than the K-D-
B-tree (see also [10]). All other attempts at externalizing the kd-tree suffer from
similar inefficiencies.

Our Results. In this paper, we present the first theoretically and practically
efficient dynamic adaptation of the kd-tree to external memory. Our structure,
which we call the Bkd-tree, maintains the high storage utilization and query
efficiency of a static K-D-B-tree, while also supporting updates I/O-efficiently.
We have conducted extensive experiments that show that the Bkd-tree outper-
forms previous approaches in terms of storage utilization and update time, while
maintaining similar query performance.

The main ingredients used in the design of the Bkd-tree are an I/O-efficient
K-D-B-tree bulk loading algorithm and the so-called logarithmic method for
making a static data structure dynamic [3, 21]. Instead of maintaining one tree
and dynamically rebalance it after an insertion, we maintain a set of log, (N/M)
static K-D-B-trees and perform updates by rebuilding a carefully chosen set of
the structures at regular intervals (M is the capacity of the memory buffer, in
number of points). This way we maintain the close to 100% space utilization of
the static K-D-B-tree. The idea of maintaining multiple trees in order to speed up
insertion time has also been used by O’Neill et al. [20] and Jagadish et al. [14].
Their structures are used for indexing points on a single attribute and their
techniques cannot be extended to efficiently handle multi-dimensional points.

To answer a window query using the Bkd-tree, we have to query all the
logy (N/M) structures instead of just one, but theoretically we actually main-
tain the worst case optimal O(\/N/B + K/B) query bound. Using an opti-
mal O(% logyr/ %) I/O bulk loading algorithm, an insertion is performed in

50 Octavian Procopiuc et al.

O(%(logM/B) (log, &) 1/Os amortized. This bound is much smaller than the
familiar O(logg N) BT-tree update bound for all practical purposes. One disad-
vantage of the periodical rebuilding is of course that the update bound varies
from update to update (thus the amortized result). However, queries can still be
answered while an update (rebuilding) is being performed, and (at least theoret-
ically) the update bound can be made worst case using additional storage [21].

While our Bkd-tree has nice theoretical properties, the main contribution of
this paper is a proof of its practical viability. We present the result of an extensive
experimental study of the performance of the Bkd-tree compared to the K-D-B-
tree using both real-life (TIGER) and artificially generated (uniform) data. In
addition, we used a carefully chosen family of data sets to show that both the
K-D-B-tree and the hB-tree (an improved version of the hB-tree, see [10]) can
have poor space utilization (as low as 28% for the K-D-B-tree and 36% for the
hB#-tree), while the space utilization of the Bkd-tree is always above 99%. At
the same time, an insertion in a Bkd-tree can be up to 100 times faster than an
insertion on the K-D-B-tree, in the amortized sense. The main practical question
is of course how the use of log,(N/M) structures affects the query performance.
Even though the theoretical worst case efficiency is maintained, the querying of
several structures instead of just one results in an increased number of random
I/Os compared to the more localized I/Os in a single structure. Our experiments
show that this makes no or relatively little difference, and thus that the dynamic
Bkd-tree maintains the excellent query performance of the static K-D-B-tree.

Finally, we regard the demonstration of the practical efficiency of the loga-
rithmic method as an important general contribution of this paper; while the
main focus of the paper is on making the kd-tree dynamic, the logarithmic
method is applicable to any index structure for which an efficient bulk loading
algorithm is known. Thus our results suggest that in general we might be able
to make practically efficient static index structures dynamically efficient using
the method.

The rest of this paper is organized in three sections. The details of the Bkd-
tree are given in Section 2. Then, in Section 3, we describe the hardware, soft-
ware, and data sets used in our experimental study. The results of the experi-
ments are reported and analyzed in Section 4.

2 Description of the Bkd-Tree

As mentioned, the Bkd-tree consists of a set of balanced kd-trees. Each kd-tree
is laid out (or blocked) on disk similarly to the way the K-D-B-tree is laid out.
To store a given kd-tree on disk, we first modify the leaves to hold B points,
instead of just one. In this way, points are packed in N/B blocks. To pack the
internal nodes of the kd-tree, we execute the following algorithm. Let B; be the
number of nodes that fit in one block. Suppose first that N/B is an exact power
of B;, i.e., N/B = B?, for some p, and that B; is an exact power of 2. In this
case the internal nodes can easily be stored in O(N/(BB;)) blocks in a natural
way. Starting from the kd-tree root v, we store together the nodes obtained

Bkd-Tree: A Dynamic Scalable kd-Tree 51

by performing a breadth-first search traversal starting from v, until B; nodes
have been traversed. The rest of the tree is then blocked recursively. Using this
procedure the number of blocks needed for all the internal nodes is O(N/(BB;)),
and the number of blocks touched by a root-leaf path—the path traversed during
a point query—is logp, (N/B)+1 = O(logz(N/B)). If N/B is not a power of B;,
we fill the block containing the kd-tree root with less than B; nodes in order to
be able to block the rest of the tree as above. If N/B is not a power of 2 the kd-
tree is unbalanced and the above blocking algorithm can end up under-utilizing
disk blocks. To alleviate this problem we modify the kd-tree splitting method
and split at rank power of 2 elements, instead of at the median elements. More
precisely, when constructing the two children of a node v from a set of p points,
we assign 2U1°227) points to the left child, and the rest to the right child. This
way, only the blocks containing the rightmost path-—at most [logg (N/B)]—can
be under-full.

From now on, when referring to a kd-tree, we will mean a tree stored on disk
as described above.

2.1 Bulk Loading kd-Trees

Classically, a kd-tree is built top-down, as outlined in Figure 2 (left column).
The first step is to sort the input on both coordinates. Then (in Step 2) we
construct the nodes in a recursive manner, starting with the root. For a node v,
we determine the splitting position by reading the median from one of the two
sorted sets associated with v (when splitting orthogonal to the z-axis we use the
file sorted on z, and when splitting orthogonal to the y-axis we use the file sorted
on y). Finally we scan these sorted sets and distribute each of them into two
sets and recursively build the children of v. Since the kd-tree on N points has
height log,(N/B) and each input point is read twice and written twice on every
level, the algorithm performs O((N/B)log,(N/B)) I/Os, plus the cost of sorting,
which is O((N/B)log,,,5(N/B)) 1/0s [2], for a total of O((IN/B)log,(N/B))
I/Os.

An improved bulk loading method was proposed in [1]. Instead of construct-
ing one level at a time, this algorithm constructs an entire @ (log, (M /B))-height
subtree of the kd-tree at a time. The major steps of the algorithm are outlined
in Figure 2 (right column). As before, the first step is to sort the input on both
coordinates. Then (in Step 2) we build the upper log, t levels of the kd-tree using
just three passes over the input file, where t = O(min{M/B,v/M}). We achieve
this by first determining a ¢ x ¢ grid on the input points: ¢ horizontal (vertical)
grid lines are chosen (in Step 2a) so that each horizontal (vertical) strip contains
N/t points—refer to Figure 3(a). Then (in Step 2b) the number of points in each
grid cell is computed by simply scanning the input file. These counts are stored
in a t x t grid matrix A, kept in internal memory (the size of the matrix, t2, is at
most M). The upper subtree of height log, ¢ is now computed (in step 2c) using
a top-down approach. Assume the root node partitions the points using a ver-
tical line. This split line can be determined by first computing (using the cell
counts in matrix A) the vertical strip X}, containing the line. After that we can

52 Octavian Procopiuc et al.

Algorithm Bulk Load (binary) Algorithm Bulk Load (grid)

(1) Create two sorted lists; (1) Create two sorted lists;

(2) Build kd-tree top-down: (2) Build log, ¢ levels of the kd-tree:
Starting with the root node, do (a) Compute ¢ grid lines orthogonal
the following steps for each node, to the x axis and ¢ grid lines or-
in a depth-first-search manner: thogonal to the y axis;

(a) Find the partitioning line; (b) Create the grid matrix A contain-
(b) Distribute input into two sets, ing the grid cell counts;
based on partitioning line; (c) Create a subtree of height log, ¢,
using the counts in the grid ma-
trix;
(d) Distribute input into ¢ sets, cor-
responding to the ¢ leaves;
(3) Build the bottom levels either in
main memory or by recursing step
(2).

Fig. 2. Two algorithms for bulk loading a kd-tree

easily compute which block to read from the list sorted by z-coordinate in order
to determine the point defining the split. Next the grid matrix A is split into two
new matrices, A< and A~ storing the grid cell counts from the left and from the
right of the split line, respectively. This can be done by scanning the contents
of the vertical strip Xj. Figure 3(b) shows how a cell C;; from the original
grid is split into two cells, C’fk and C;k. The number of points in C;k is stored
in A%, , and the number of points in C7, is stored in A7, for each j, 1 <j <t.
Using matrices A< and A>, the split corresponding to two children of v can be
computed recursively. For each node we produce, the size of the matrix A in
internal memory grows by t cells. Since t < O(v/M), it still fits in memory after
producing log, t levels, that is 2!°82* = ¢ nodes, of the tree. After producing this
number of levels, the resulting subtree determines a partition of the space into ¢

Fig. 3. Finding the median using grid cells. (a) Each strip contains N/t points.
(b) Cells C5, and €7, are computed by splitting cell Cjx

Bkd-Tree: A Dynamic Scalable kd-Tree 53

rectangles. At this point we distribute the input points into these rectangles by
scanning the input and, for each point p, using the constructed subtree to find
the rectangle containing p (Step 2d). If the main memory can hold ¢+ 1 blocks—
one for each rectangle in the partition, plus one for the input—the distribution
can be done in 2N/B 1/0s. This explains the choice of t = @(min(M/B,/M)).
Finally, the bottom levels of the tree are constructed (in Step 3) by recursing
Step 2 or, if the point set fits in internal memory, by loading it in memory and
applying the binary bulk load algorithm to it.

Since Step 2 scans the input points two times, it follows that ©(log,(M/B))
levels of the kd-tree can be built using O(N/B) 1/Os. Thus the entire kd-tree is
built in O((N/B)logy, g(N/B)) 1/Os. This is a factor of ©(log,(M/B)) better
than the binary bulk load algorithm. For most practical purposes, the logarithmic
factor is at most 3, so the bulk loading complexity is effectively linear.

The algorithm presented in this section uses only the characteristics of the
internal memory kd-tree, and not the specific disk layout. Consequently, other
I/O-efficient data structures based on the kd-tree can be bulk loaded using this
algorithm. In particular, the algorithm can be readily used to bulk load an hB*/-
tree, which was mentioned as an open problem in [10].

2.2 Dynamic Updates

A Bkd-tree on N points in the plane consists of logy(N/M) kd-trees. The ith
kd-tree, T}, is either empty or contains exactly 2°M points. Thus, Ty stores at
most M points. In addition, a structure T3 containing at most M points is
kept in internal memory. Figure 4 depicts the organization of the Bkd-tree. This
organization is similar to the one used by the logarithmic method [8, 21].

The algorithms for inserting and deleting a point are outlined in Figure 5.
The simplest of the two is the deletion algorithm. We simply query each of the
trees to find the tree T; containing the point and delete it from T;. Since there
are at most logy(N/M) trees, the number of 1/Os performed by a deletion is
O(log 5 (N/ B) log, (N/M)).

TV T, T, T, T,
1 .
size M size M size 2M size 0 size 2'M
In main memory On external storage

Fig. 4. The forest of trees that makes up the data structure. In this instance, T5
is empty

54 Octavian Procopiuc et al.

Algorithm Insert(p) Algorithm Delete(p)

(1) Insert p into in-memory buffer T47; (1) Query T¢” with p; if found, delete it

(2) If " is not full, return; otherwise, and return;
find the first empty tree T} and ex- (2) Query each non-empty tree in the
tract all points from T¢Y and T, forest (starting with To) with p; if
0 <i < k into a file F found, delete it and return;

(3) Bulk load Tj from the items in F;

(4) Empty T¢? and T3, 0 < i < k.

Fig. 5. The Insert and Delete algorithms for the Bkd-tree

The insertion algorithm is fundamentally different. Most insertions (M —1 out
of M consecutive ones) are performed directly on the in-memory structure T¢¥.
Whenever T} becomes full, we find the smallest k such that T} is an empty
kd-tree. Then we extract all points from T¢¥ and T;, 0 < i < k, and bulk load
the tree T} from these points. Note that the number of points now stored in T}, is
indeed 2F M since T stores M points and each T;, 1 < i < k, stores exactly 2! M
points (T was the first empty kd-tree). Finally, we empty 737 and T;, 0 < i < k.
In other words, points are inserted in the in-memory structure and gradually
“pushed” towards larger kd-trees by periodic reorganizations of small kd-trees
into one large kd-tree. The larger the kd-tree, the less frequently it needs to be
reorganized.

To compute the amortized number of 1/Os performed by one insertion, con-
sider N consecutive insertions in an initially empty Bkd-tree. Whenever a new
kd-tree T}, is constructed, it replaces all kd-trees 7, 1 < j < k, and the in-
memory structure T2, This operation takes O((2¥M/B) logM/B(2kM/B)) I/0s
(bulk loading T}) and moves exactly 2¥M points into the larger kd-tree T. If
we divide the construction of T} between these points, each of them has to
pay O((1/B) logM/B(QkM/B)) = O((1/B)logyp(N/B)) 1/Os. Since points
are only moving into larger kd-trees, and there are at most log,(N/M) kd-trees,

a point can be charged at most log,(N/M) times. Thus the final amortized cost
(IOgM/B(N/B) 10%2(N/M)) I/OS
5 .

of an insertion is O

2.3 Queries

To answer a window query on the Bkd-tree we simply have to query all
logy(N/M) kd-trees. The worst-case performance of a window query on one
kd-tree storing N points is an optimal O(1/N/B + K/B) 1/0s, where K is the
number of points in the query window. Since the kd-trees that form the Bkd-tree
are geometrically increasing in size, the worst-case performance of the Bkd-tree
is also O(y/N/B+ K/B) I/Os. However, since the average window query perfor-
mance of a kd-tree is often much better than this worst-case performance [24], it
is important to investigate how the use of several kd-trees influences the practical
performance of the Bkd-tree compared to the kd-tree.

Bkd-Tree: A Dynamic Scalable kd-Tree 55

3 Experimental Platform

In this section we describe the setup for our experimental studies, providing
detailed information on the software, hardware, and data sets that were used.

Software Platform. We implemented the Bkd-tree in C++ using TPIE. TPIE [4]
is a templated library that provides support for implementing I/O-efficient al-
gorithms and data structures. In our implementation we used a block size of
16KB for internal nodes (following the suggestions of Lomet [17] for the B-tree),
resulting in a maximum fanout of 512. The leaves of a kd-tree, stored in 16KB
blocks as well, contain a maximum of 1364 (key, pointer) elements. We imple-
mented the Bkd-tree using the grid bulk loading algorithm during insertions and
a linear array as the internal memory structure 77 (more sophisticated data
structures can be implemented for better CPU performance). For comparison
purposes, we also implemented the K-D-B-tree, following closely the details pro-
vided in the original paper [22] regarding the insertion algorithm. As mentioned
in the Introduction, the K-D-B-tree is the point of departure for the hB-tree [18]
and the hBY-tree [10]. The latter is the state-of-the-art in indexing data struc-
tures for multi-dimensional points. We used the authors’ implementation of the
hB™ -tree for the space utilization experiments. The provided implementation is
in-memory, but it simulates I/Os by counting accesses to data blocks. For the
rest of the experiments, we chose not to use this implementation of the hB”-tree,
since we wanted to emphasize the running times of the Bkd-tree for data sets
much larger than main memory.

Data Sets. We chose three different types of point sets for our experiments: real
points from the TIGER/Line data [25], uniformly distributed points, and points
along a diagonal of a square. The real data consists of six sets of points generated
from the road features in the TIGER/Line files. TIGER Seti,1 < i < 6, consists
of all points on CD-ROMs 1 through i. Note that the largest set, TIGER set 6,
contains all the points in the road features of the entire United States and its
size is 885MB. Table 1 contains the sizes of all 6 data sets. Figure 6(a) depicts
TIGER set 1, representing 15 eastern US states. It can be seen that points are
somewhat clustered, with clusters corresponding to urban areas. The uniform
data consists of six sets, each containing uniformly distributed points in a square
region. The smallest set contains 20 million points, while the largest contains 120
million points. Table 2 contains the sizes of all 6 sets. The final group of sets
contains points arranged on a diagonal of a square, as shown in Figure 6(b). We
used these sets only for space utilization experiments. In all sets, a point consists

Table 1. The sizes of the TIGER sets.

Set 1] 2] 3 4 5 | 6
Number of points|15483533]29703113]39523372|54337289] 66562237 77383213
Size (MB) 177.25 | 340.00 | 452.38 | 621.94 | 761.82 | 885.69 |

56 Octavian Procopiuc et al.

(b)

Fig.6. (a) An image of TIGER set 1 (all the points in the road features from
15 eastern US states). The white area contains no points. The darkest regions
have the highest density of points. (b) A diagonal data set

of three integer values: the z-coordinate, the y-coordinate, and an ID, for a total
of 12 bytes per point. Thus, the largest data set we tested on, containing 120
million points, uses 1.34GB of storage.

Hardware Platform. We used a dedicated Dell PowerEdge 2400 workstation with
one Pentium IIT/500MHz processor, running FreeBSD 4.3. A 36GB SCSI disk
(IBM Ultrastar 36LZX) was used to store all necessary files: the input points,
the data structure, and the temporary files. The machine had 128 MB of memory,
but we restricted the amount of memory that TPIE could use to 64MB. The rest
was used by operating system daemons. We deliberately used a small memory,
to obtain a large data size to memory size ratio.

4 Experimental Results

4.1 Space Utilization

As mentioned previously, the Bkd-tree has close to 100% space utilization. To
contrast this to the space utilization of the K-D-B-tree and the hB-tree, we
inserted the points from each of the diagonal data sets, sorted by z-coordinate,
in all three data structures, and measured the final space utilization. The results
are depicted in Figure 7(a). As expected, the Bkd-tree space utilization is almost
100% (between 99.3% and 99.4%). For the K-D-B-tree, the space utilization is
as low as 28%, while for the hB™-tree it is as low as 38%. In the case of the

Table 2. The sizes of the uniform data sets

Set 1 2 3 4 5 6
Number of points (millions)| 20 40 60 80 100 120
Size (MB) 228.88(457.76(686.65|915.53|1144.41|1373.29

Bkd-Tree: A Dynamic Scalable kd-Tree 57

100¢ [Bkd-tree
Il K-D-B-tree
90
100f
80
g g
g 70 Z 80
o 8
7 K
N N
= 50 Bl = 60
=] =]
i3 4 @
§ 40'*\-«**\' §40 |
0 30 5 [2)
20 9
—e— Bkd-tree 201
10{{ —— hB-tree 4
— K-D-B-tree
85 1 0

Tiger Set

(a) (b)
Fig. 7. (a) Space utilization for the diagonal sets. (b) Space utilization for the
TIGER sets

0.6 0.7 0.8 0.!
Number of points in structure (in millions)

K-D-B-tree, the diagonal pattern causes most leaves of the tree to be inside long
and skinny rectangles, with points concentrated on one end of the rectangle.
When an internal node is split, some of these leaves are cut, resulting in empty
leaves. As data sets get larger, the effect is compounded (empty leaves are split
as well), resulting in increasingly lower space utilization. In the case of the hB/I-
tree, node splits are not propagated down to leaves. Indeed, the space utilization
of the leaves remains at 50% or better, as reported in [10]. However, node splits
cause redundancy: Some kd-tree nodes are stored in multiple hB-tree nodes.
Consequently, the size of the index grows dramatically, resulting in low fanout,
large tree height, and poor overall space utilization. In our experiments, the
K-D-B-tree had lower tree height than the corresponding hB”-tree.

These results underscore the sensitivity of the K-D-B-tree and the hB”-tree
to data distribution and insertion order. Indeed, much better space utilization
is obtained when the points in a diagonal data set are inserted in random order,
rather than sorted on the = coordinate.

To investigate the space utilization for more practically realistic data sets,
we repeated the experiment using the TIGER data. The structures were built by
repeated insertions, and the order of insertion is given by the order in which the
points were stored in the original TIGER /Line data. Unfortunately, we were not
able to run the hB/-tree experiments in a reasonable amount of time. Experi-
ments on smaller TIGER data sets show the space utilization of the hB'-tree
to be around 62% (consistent with the results reported in [10] for similar geo-
graphic data). Although not as extreme as the diagonal sets, the real life data
sets result in relatively poor space utilization—refer to Figure 7(b). For these
sets, the space utilization of the K-D-B-tree is around 56%, still far from the
99.4% utilization of the Bkd-tree.

58 Octavian Procopiuc et al.

4.2 Bulk Loading Performance

To compare the two kd-tree bulk loading algorithms presented in Section 2.1,
we tested them on both the uniform and the real data sets. Figure 8 shows the
performance for the uniform data sets and Figure 9 shows the performance for
the TIGER data sets. The figures reflect only the building time, leaving out the
time needed to sort the data set on each coordinate, which is common for the
two methods.

The experiments on uniformly distributed data (Figure 8(a)) show that, in
terms of running time, the grid method is at least twice as fast as the binary
method and, as predicted by the theoretical analysis, the speedup increases with
increased set size. When comparing the number of 1/Os (Figure 8(b)), the
difference is even larger. To better understand the difference in the number
of I/Os performed by the two methods, we can do a “back-of-the-envelope”
computation: for the largest size tested, the binary method reads the input file
14 times and writes it 13 times (two reads and two writes for each of the upper
levels, and two reads and one write for the lower levels, which are computed
in memory), while the grid method reads the input file 5 times and writes it
3 times (one read to compute the grid matrix, two reads and two writes for
all the upper levels, and two reads and one write for the lower levels, which
are computed in memory). This means that the grid method saves 9 reads of
the entire file and, more importantly, 10 writes of the entire input file. To put
it differently, the grid method performs less than a third fewer I/Os than the
binary method. This corresponds perfectly with the results from Figure 8(b).
The difference between the running time speedup (approximately 2) and the
I/O speedup (approximately 3) reflects the fact that the grid method is more
CPU-intensive.

The experiments on the TIGER data (Figure 9) show a similar pattern. Note
that the kd-tree bulk loading performance is independent of the data distribu-

T T T x10’
—— Binary method —— Binary method
4000 —s— Grid method —e— Grid method

3500

N
o

3000

n

2500

2000

Time (seconds)
Number of I/Os
5

1500

1000
500 al 1

60 80 100 120
Number of points in structure (in millions)

(a) (b)

Fig. 8. Bulk loading performance on uniform data: (a) Time (in seconds), (b)
Number of I/Os

=)
o

f
S
N
S
o

0 60 80 100
Number of points in structure (in millions) 20

Bkd-Tree: A Dynamic Scalable kd-Tree 59

5
3000 16742

= Binary method [Binary method
B Grid method Il Grid method

14

2500

12
2000

=)

seconds)

1500

Time
Number of I/Os
=) ®

1000

500

3 4
Tiger Set

3 4
Tiger Set

(a) (b)

Fig.9. Bulk loading performance on TIGER data: (a) Time (in seconds), (b)
Number of I/Os

tion, which means that the bulk loading performance can be predicted very
accurately only from the number of points to be indexed. To illustrate this, con-
sider the uniformly distributed set containing 40 million points, and TIGER set
3, containing 39.5 million points. Comparing the bulk loading times for the two
sets, we find virtually identical values.

4.3 Insertion Performance

To compare the average insertion performance of the Bkd-tree with that of the
K-D-B-tree, we inserted all the points of each TIGER set into an initially empty
structure, and we divided the overall results by the number of points inserted.
Figure 10 shows the average time and the average number of I/Os for one in-
sertion. In terms of elapsed time, a Bkd-tree insertion is only twice as fast as a
K-D-B-tree insertion. When I/Os are counted, however, the Bkd-tree values are
not even visible on the graph, since they are well below 1. This dissimilarity in
the two performance metrics can be easily explained by the layout of the TIGER
data and caching effects. Since points are inserted in the K-D-B-tree in the order
in which they appear in the original data sets (points in the same county are
stored together), the K-D-B-tree takes advantage of the locality existent in this
particular order and the fact that we cache root-leaf paths during insertions. If
the next point to be inserted is next to the previous one, the same path could
be used, and the insertion may not perform any I/Os.

We also compared the average insertion performance of the Bkd-tree and the
K-D-B-tree using the artificially generated data. The insertions in these exper-
iments exhibit less (or no) locality since points were inserted in random order.
Figure 11 shows the average time and number of 1/Os for one insertion, using
the uniform data sets. For the Bkd-tree, the values were obtained by inserting
all points one by one in an initially empty structure and averaging. For the
K-D-B-tree, however, we have not been able to perform the same experiment.

60 Octavian Procopiuc et al.

x10” 6

2 [K-D-B-tree
B Gtvee B Bid-tree

Time (seconds)
o
>
Number of I/Os

3 4
Tiger Set

3TigerSet4
(a) (b)

Fig.10. Insertion performance on K-D-B-trees and Bkd-trees (TIGER data):
(a) Time (in seconds), (b) Number of I/Os

Even for the smallest set, containing 20 million points, inserting them one by
one takes more than 2 days! This is due to the lack of locality in the insertion
pattern; even if all internal nodes are cached, each insertion still makes at least
two I/Os (to read and to write the corresponding leaf) because chances are that
the relevant leaf is not in the cache. This results in 40 million random I/Os for
the 20 million point set.

Since we could not build the K-D-B-tree by repeated insertions, we designed
a different experiment to measure the K-D-B-tree insertion performance. We
bulk loaded a K-D-B-tree using the input points (filling each leaf and node up to
70% of capacity) and then we inserted 1000 random points into that structure.
As predicted by the theoretical analysis, a Bkd-tree insertion is several orders of
magnitude faster than a K-D-B-tree insertion, both in terms of elapsed time and
number of I/Os; in terms of elapsed time, the Bkd-tree insertion is more then 100
times faster than the K-D-B-tree insertion, for all data sizes. In terms of number
of 1/0s, the Bkd-tree is up to 230 times faster. The discrepancy between the
two numbers comes, again, from the fact that we cache nodes and leaves. Since
the Bkd-tree implicitly uses the entire main memory as cache, we allowed the
K-D-B-tree to do the same. However, due to the randomness of the data, very
few leaves were found in the cache.

4.4 Query Performance

Although the worst case asymptotic bounds for a window query on a Bkd-tree
and a K-D-B-tree are identical, we expect the Bkd-tree to perform more I/Os,
due to the multiple trees that need to be searched. To investigate this, we queried
a Bkd-tree and a K-D-B-tree with the same window. Figure 12 shows the running
times and number of I/Os of a square-shaped window query that covers 1% of the
points in each of the uniform data sets. These values are obtained by averaging
over 10 queries of the same size, whose position is randomly chosen in the area

Bkd-Tree: A Dynamic Scalable kd-Tree 61

—+— K-D-B-tree —+— K-D-B-tree
—o— Bkd-tree —o— Bkd-tree
107 /\M

Time (seconds, log. scale)
Number of I/Os (log. scale)
3

0 60 80 100 120 20 40 60 80 100 120
Number of points in structure (in millions) Number of points in structure (in millions)

(a) (b)
Fig.11. Insertion performance on K-D-B-trees and Bkd-trees (uniformly dis-
tributed data): (a) Time (in seconds), (b) Number of I/Os

covered by the points. It can be seen that the Bkd-tree performs roughly the
same number of I/Os as the K-D-B-tree. This somewhat unexpected result is the
consequence of a number of factors. First, the average number of kd-trees forming
the Bkd-tree is less than [log,(N/M)] (the maximum possible). Table 3 shows
the number of non-empty kd-trees and the number of maximum kd-trees for
each of the 6 uniform data sets. It can easily be shown that in the course of 2P M
insertions into an initially empty Bkd-tree, the average number of non-empty
kd-trees is p/2. As a result, the number of kd-trees that need to be searched
during a window query is smaller than the maximum. Second, the individual
kd-trees in the Bkd-tree have smaller heights than the K-D-B-tree built on the
same data set. This is due to the geometrically decreasing sizes of the kd-trees
and to the fact that, as noted in Section 3, the fanout of the Bkd-tree is larger
than the fanout of the K-D-B-tree. As a result, the number of internal nodes
read during a window query is small. Third, the kd-tree query performance is
very efficient for these data sets. Table 4 shows, for the uniform data sets, the
number of points returned by the query as a percentage of the total number of
points retrieved. As a result, both data structures read roughly the same number
of leaf-level blocks, which is close to optimal.

In terms of running time, the K-D-B-tree is faster than the Bkd-tree. This
can be explained by the fact that the queries are performed on a bulk loaded
K-D-B-tree. The trees constructed by the bulk loading algorithms described in

Table 3. The number of non-empty kd-trees and the maximum number of
kd-trees, for each Bkd-tree built on the uniform data sets

Number of points (in millions)|20|40|60|80/100|120
Non-empty kd-trees 31313444
Max kd-trees ([log,(N/M)]) |4|5|6|6| 7 | 7

62 Octavian Procopiuc et al.

—+— K-D-B-tree 1000 —— K-D-B-tree
—o— Bkd-tree —o— Bkd-tree

~
=]
3

Time (seconds)
Number of I/Os

20 40 60 80 100 120 20 404 . 80 o iions© 120
Number of points in structure (in millions) lumber of points in structure (in millions)

(a) (b)

Fig.12. Range query performance on the uniform data (the range area is 1%
of entire area): (a) Time (in seconds), (b) Number of I/Os

Section 2.1 exhibit a high level of locality, in the sense that points that are nearby
on disk are likely to be spatially close. Queries performed on the K-D-B-tree are
able to take advantage of this locality, resulting in a more sequential access
pattern. On the other hand, the Bkd-tree has less locality, since multiple trees
have to be queried to obtain the final result. In a real-world spatial database
the K-D-B-tree is often obtained by repeated insertions. This typically results
in a structure with low space utilization and poor locality. This behavior can
be observed in the experiments performed on the TIGER sets. As explained
in Section 4.3, the K-D-B-tree for the TIGER sets was obtained by repeated
insertions. As a result, it exhibits much less locality. Figure 13 shows that the
two structures perform similarly in terms of time, attesting to the fact that both
structures have to perform some random I/O (the Bkd-tree because it queries
multiple kd-trees, and the K-D-B-tree because it exhibits less locality). In terms
of I/0, the Bkd-tree is performing half as many I/Os as the K-D-B-tree. This
is due to the poor space utilization of the K-D-B-tree, which was shown to be
around 56% for the TIGER data sets (see Section 4.1).

In order to measure the effect of the window size on the query performance,
we ran a set of experiments with various window sizes. Figure 14 shows the
results of these experiments. Both the K-D-B-tree and the Bkd-tree are built
on the largest data set, containing 120 million uniformly distributed points.

Table 4. The number of points returned by a window query as a percentage of
the total number of points retrieved. For each set, the window covers 1% of the
total number of points

Number of points (in millions)| 20 | 40 | 60 | 80 {100 |120
Bkd-tree 78.4|84.7(88.1/86.5|90.4(90.6
K-D-B-tree 74.8|83.6(86.2/87.9190.2(90.6

Bkd-Tree: A Dynamic Scalable kd-Tree 63

"|[=3 k-D-B-tree [K-D-B-tree
I Bkd-tree Il Bkd-tree

Time (seconds)
Number of I/Os
)

S

3 4 3 4
TIGER Set TIGER Set

(a) (b)
Fig.13. Range query performance on the TIGER data: (a) Time (in seconds),
(b) Number of I/Os

On the graph showing elapsed time, we see again the effects of a freshly bulk
loaded K-D-B-tree, resulting in a more sequential I/O pattern than the Bkd-
tree. But the I/O performance of the two structures is virtually identical for
the entire range of query sizes, confirming the results obtained on the 1% query,
namely that the Bkd-tree’s window query performance is on par with that of
existing data structures. Thus, without sacrificing window query performance,
the Bkd-tree makes significant improvements in insertion performance and space
utilization: insertions are up to 100 times faster than K-D-B-tree insertions, and
space utilization is close to a perfect 100%, even under massive insertions.

25 T T
—+— K-D-B-tree 2000 —+— K-D-B-tree
—o— Bkd-tree 1800 —>— Bkd-tree
208 1 1600

1400

Number of I/0s
® 2 »
3 38 o
8 8 3

o
-
S 2
s 3

N
=}
3

=)

05 1 15 2 05 1 15] 2
Query window size as a percentage of entire window size Query window size as a percentage of entire window size

(a) (b)
Fig.14. Performance of range queries of increasing size (the data set consists
of 120 million points uniformly distributed in a square): (a) Time (in seconds),
(b) Number of I/Os

64

Octavian Procopiuc et al.

Acknowledgments

We would like to thank Georgios Evangelidis for providing us the hB-tree code.

References

1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

P. K. Agarwal, L. Arge, O. Procopiuc, and J. S. Vitter. A framework for index
bulk loading and dynamization. In Proc. Intl. Colloq. Automata, Languages and
Programming, pages 115-127, 2001. 51

A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and related
problems. Commun. ACM, 31:1116-1127, 1988. 51

L. Arge. External memory data structures. In J. Abello, P. M. Pardalos, and
M. G. C. Resende, editors, Handbook of Massive Data Sets, pages 313-358. Kluwer,
2002. 47

L. Arge, O. Procopiuc, and J. S. Vitter. Implementing I/O-efficient data structures
using TPIE. In Proc. Furopean Symp. on Algorithms, pages 88—100, 2002. 55
L. Arge, V. Samoladas, and J. S. Vitter. On two-dimensional indexability and op-
timal range search indexing. In Proc. ACM Symp. Principles of Database Systems,
pages 346-357, 1999. 47

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient
and robust access method for points and rectangles. In Proc. SIGMOD Intl. Conf.
on Management of Data, pages 322-331, 1990. 47

J. L. Bentley. Multidimensional binary search trees used for associative searching.
Commun. ACM, 18(9):509-517, Sept. 1975. 47

J. L. Bentley. Decomposable searching problems. Inform. Process. Lett., 8:244—
251, 1979. 49, 53

S. Berchtold, C. Bohm, and H.-P. Kriegel. Improving the query performance of
high-dimensional index structures by bulk load operations. In Proc. Intl. Conf.
on Extending Database Technology, volume 1377 of Lecture Notes Comput. Sci.,
pages 216-230, 1998. 47

G. Evangelidis, D. Lomet, and B. Salzberg. The hB” -tree: A multi-attribute index
supporting concurrency, recovery and node consolidation. The VLDB Journal,
6:1-25, 1997. 47, 49, 50, 53, 55, 57

V. Gaede and O. Giinther. Multidimensional access methods. ACM Computing
Surveys, 30(2):170-231, 1998. 47

R. Grossi and G. F. Italiano. Efficient cross-tree for external memory. In
J. Abello and J. S. Vitter, editors, Ezternal Memory Algorithms and Visualization,
pages 87-106. American Mathematical Society, 1999. Revised version available at
ftp://ftp.di.unipi.it/pub/techreports/TR-00-16.ps.Z. 47

A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proc.
SIGMOD Intl. Conf. on Management of Data, pages 47-57, 1984. 47

H. V. Jagadish, P. P. S. Narayan, S. Seshadri, S. Sudarshan, and R. Kanneganti.
Incremental organization for data recording and warehousing. In Proc. Intl. Conf.
on Very Large Data Bases, pages 16-25, 1997. 49

K. V. R. Kanth and A. K. Singh. Optimal dynamic range searching in non-
replicating index structures. In Proc. Intl. Conf. on Database Theory, volume
1540 of Lecture Notes Comput. Sci., pages 257-276, 1999. 47

D. T. Lee and C. K. Wong. Worst-case analysis for region and partial region
searches in multidimensional binary search trees and balanced quad trees. Acta
Informatica, 9:23-29, 1977. 48

(17]

18]

[19]

[20]
21]

[22]

Bkd-Tree: A Dynamic Scalable kd-Tree 65

D. Lomet. B-tree page size when caching is considered. SIGMOD Record,
27(3):28-32, 1998. 55

D. B. Lomet and B. Salzberg. The hB-Tree: A multiattribute indexing method
with good guaranteed performance. ACM Trans. on Database Systems, 15(4):625—
658, Dec. 1990. 47, 49, 55

J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid file: An adaptable,
symmetric multikey file structure. ACM Trans. on Database Systems, 9(1):38-71,
Mar. 1984.

P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil. The log-structured merge-
tree (LSM-tree). Acta Informatica, 33(4):351-385, 1996. 49

M. H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture
Notes Comput. Sci. Springer-Verlag, 1983. 49, 50, 53

J. T. Robinson. The K-D-B-tree: A search structure for large multidimensional
dynamic indexes. In Proc. SIGMOD Intl. Conf. on Management of Data, pages
10-18, 1981. 47, 48, 55

H. Samet. The design and analysis of spatial data structures. Addison-Wesley,
1990. 47, 48

Y. V. Silva Filho. Average case analysis of region search in balanced k-d trees.
Inform. Process. Lett., 8:219-223, 1979. 48, 54

TIGER/Line Files, 1997 Technical Documentation. U.S. Census Bureau, 1998.
http://www.census.gov/geo/tiger/TIGER97D.pdf. 55

	Bkd-Tree: A Dynamic Scalable kd-Tree
	Introduction
	Description of the Bkd-Tree
	Bulk Loading kd-Trees
	Dynamic Updates
	Queries

	Experimental Platform
	Experimental Results
	Space Utilization
	Bulk Loading Performance
	Insertion Performance
	Query Performance

