Query Planning for Range Queries in Elasticsearch | Elastic Blog 2021/6/30 F43:23

Query Planning for Range Queries in
Elasticsearch

If you are a frequent reader of this blog, you probably know that a lot of
effort has already been put into making_ range queries faster. This time
we are going to talk about recent improvements to the specific yet
common case of range queries when they are used in conjunctions, ie.
when they are anped with other queries.

Why are conjunctions different?

The way conjunctions work is by iterating over matches from the most
selective clause and verifying whether other required clauses match too.
This means that we need two operations to be fast in order for
conjunctions to be fast as well:

e iterating over all matches,
o verifying whether a particular document matches.

Ranges have been problematic so far because they could only iterate
over all matches efficiently, not verify individual documents. Numerics are
indexed using a tree structure, called "points", that is organized by value:
it can help you find matching documents for a given range of value, but if
you want to verify whether a particular document matches, you have no
choice but to compute the set of matching documents and test whether
it contains your document. Said otherwise, even if you only need to verify
a few documents, you need to evaluate all documents that match the
range!

There must be a better way

Good news is that in a majority of cases, Elasticsearch also has doc

https://www.elastic.co/cn/blog/better-query-planning-for-range-queries-in-elasticsearch g 1/5

https://www.elastic.co/blog/searching-numb3rs-in-5.0

Query Planning for Range Queries in Elasticsearch | Elastic Blog 2021/6/30 F43:23

values enabled on numeric fields. Doc values are a per-field lookup
structure that associates each document with the set of values it
contains. This is great for sorting or aggregations, but we could also use
them in order to verify matches: this is the right data-structure for it.

Should we just use doc values all the time to execute ranges? No. Doc
values are a form of columnar storage, not an indexed structure. If you
want to evaluate all documents that match a range with doc values, there
is no other choice but to perform a linear scan and verify every
document, which is slow.

In summary here is what a better query plan for range queries would look
like:

e jterate over all matches? = use the index
o verify whether a particular document matches? - use doc values

As a consequence, we introduced a new mechanism that allows queries
to know whether they will be used for sequential access (iterating over all
matches) or random access (verifying that some documents match) as
well as a query wrapper called 1ndexorbocvaluesQuery that wraps a
query that is good at iterating over matches and a query that is good at
verifying matches. Then 1ndexorbocvaluesguery delegates to the
appropriate one depending on how it is used. This query wrapper will be
used transparently by Elasticsearch on numeric fields that are both
indexed and have doc values, which is the default.

Something that is interesting to notice here is that this query planning
optimization does not only depend on the fields that are used and their
cardinalities, it goes further and estimates the total number of matches
for each node of the query tree in order to make good decisions. This
means that taking a query and slightly changing the range of values
might completely change how the query is executed under the hood.

https://www.elastic.co/cn/blog/better-query-planning-for-range-queries-in-elasticsearch g 2/5

Query Planning for Range Queries in Elasticsearch | Elastic Blog

https://www.elastic.co/cn/blog/better-query-planning-for-range-queries-in-elasticsearch

Benchmarks

Obviously all this can't be perfect. It relies on the fact that the cost of
iterating over all matches or verifying individual documents is the same
for all queries, so while the theory fits nicely, it could be that practical
results are disappointing. Let's see how this works in practice:

1x10 8

' Points
Doc values
Points + Doc values
1x107 e
@ \
[t \
= \
(&) P -~ I||
C ,-" \ -~ ~ 1
£ 1x10° | WA o \
@ T "-.,_._____- —
> B w o
< o . -
L -
&> ~ >
100000 F s R
10000 : .
0.001 0.01 0.1 1 10 100

% matches

Query latency for 0.1% term and range

For this benchmark, | took a T0M documents subset of Wikipedia with a
body field that contains the text of the article and a numeric field that
stores the last time the article was updated. A query that has a term
query that matches 10,000 documents (0.1% of the index) is intersected
with ranges that match various numbers of documents. On the X axis is
the number of documents that the range matches, and on the Y axis is
the time it took to run the query. Then | performed 3 measurements:
once using an index structure all the time ("Points"), once using doc
values all the time ("Doc values") and once using the new
IndexOrDocValuesQuery ("Points + Doc values"). When reading this chart,
beware that it uses a logarithmic scale both on the X and on the Y axis. It
might look a bit flat due to the logarithmic scale but the performance
improvement we are seeing for ranges that match ~40% of the index is a

2021/6/30 T43:23

D5 3/5

Query Planning for Range Queries in Elasticsearch | Elastic Blog

30x speedup for instance!

Given that we are intersecting a term query that matches 0.1% of the
index with a range query, the expectation was that points would perform
better than doc values when the range matches less than 0.1% of the
index and doc values would perform better than points when the range
matches more than 0.1% of the index. And hopefully the new range query
that makes a decision based on the selectivity of clauses would do the
right choice all the time. For this particular query, expectations are

perfectly met!

1x10 8 . . . —
Points
Doc values
Points + Doc values
1x107 L S o
- \
[t _ e —— % — e —— e ———
\:/) - 4
oy P
[- -~
D 1x106 |
] e
- e
>
[e}]
=
o / —.
100000 F et
10000 . . .
0.001 0.01 0.1 1 10 100

% matches

Query latency for 1% term and range

This time we are running a term query that matches 1% of the index
instead of 0.1% and the results are not as good: in practice using points
rather than doc values for the range would have been faster up to a
frequency of about 8% while we switched to doc values at 1%. It is quite
disappointing that it made the wrong choice for frequencies between 1%
and ~8% and greater than ~80%, but overall it still looks better to me
than using either points or doc values all the time (you may disagree!).
This shows why query planning is a complex and challenging problem!

https://www.elastic.co/cn/blog/better-query-planning-for-range-queries-in-elasticsearch

2021/6/30 T43:23

TiR3: 4/5

Query Planning for Range Queries in Elasticsearch | Elastic Blog 2021/6/30 F43:23

Conclusion

As we saw with the benchmarks, this change has the potential of

bringing serious performance improvements when ranges that match lots
of documents are intersected with selective queries. We used the simple
example of a conjunction that only contains two required clauses, but this
change works for arbitrary deep and broad query trees: it partitions leaf
queries into queries that are used to lead the iteration and queries that
are only used to verify matches. Simple queries like term queries
execute similarly in both cases, however ranges will now execute using
points when they need to lead and doc values when they are only used to
verify matches, while they used points all the time before.

Another simplification that was made in this blog post is that we focused
on range queries. However this enhancement is implemented for geo
bounding-box and geo-distance queries too, so you can expect
improvements to query latency if you are intersecting geo queries with
selective queries too!

We hope to be able to bring similar improvements to other queries that
always evaluate against the entire index like terms, prefix, wildcard Or
regexp queries. Those are more complicated because there is no obvious
way to estimate how many documents they will match up-front without
paying the cost of running these queries. But hopefully we will find a way!

This change will be available in Lucene 6.5 and Elasticsearch 5.4, you can
learn more about the low-level bits on LUCENE-7055 and by watching
this Elastic{ON} talk. Happy searching!

https://www.elastic.co/cn/blog/better-query-planning-for-range-queries-in-elasticsearch i3 5/5

https://issues.apache.org/jira/browse/LUCENE-7055
https://www.elastic.co/elasticon/conf/2017/sf/get-the-lay-of-the-lucene-land

