
2021/1/13, 10:21SSE

Page 1 of 8http://www.songho.ca/misc/sse/sse.html

←Back

SSE (Streaming SIMD Extentions)
Download: sse_msvc.zip, cpuid_msvc.zip

SIMD (Single Instruction, Multiple Data, pronounced "seem-dee") computation processes multiple data in parallel with a single
instruction, resulting in significant performance improvement; 4 computations at once.

SSE defines 8 new 128-bit registers (xmm0 ~ xmm7) for single-precision floating-point computations. These registers are used for
data computations only. Since each register has 128-bit long, we can store total 4 of 32-bit floating-point numbers (1-bit sign, 8-bit
exponent, 23-bit mantissa).

Scalar and Packed Intructions
SSE defines two types of operations; scalar and packed. Scalar operation only operates on the least-significant data element (bit
0~31), and packed operation computes all four elements in parallel. SSE instructions have a suffix -ss for scalar operations (Single
Scalar) and -ps for packed operations (Parallel Scalar).

Note that upper 3 elements in xmm0 for scalar operation remain unchanged.

Data Movements
The first things that you should know are how to copy data from memory to xmm registers and how to get the results back to your
application from xmm registers after SIMD operation. The data movement instructions move scalar and packed data between
memory and xmm registers.

movss: copy a single floating-point data
movlps: copy 2 floating-point data (low packed)
movhps: copy 2 floating-point data (high packed)
movaps: copy aligned 4 floating-point data (fast)
movups: copy unaligned 4 floating-point data (slow)
movhlps: copy 2 high elements to low position
movlhps: copy 2 low elements to high position

movaps requires that the data in memory must be aligned 16 byte boundary for better performance. Read more about how to align
data in Data Alignment. The source and destination operands for movhlps and movlhps must be xmm registers.

http://www.songho.ca/misc/index.html
http://www.songho.ca/misc/sse/files/sse_msvc.zip
http://www.songho.ca/misc/sse/files/cpuid_msvc.zip
http://www.songho.ca/misc/alignment/dataalign.html

2021/1/13, 10:21SSE

Page 2 of 8http://www.songho.ca/misc/sse/sse.html

Arithmetic Instructions
Arithmetic Instruction requires 2 operands (registers or memory) to perform arithmetic computation and write the result in the first
register. The source operand can be xmm register or memory, but the destination operand must be xmm register.

Arithmetic Scalar Operator Packed Operator

addss addps

subss subps

mulss mulps

divss divps

rcpss rcpps

sqrtss sqrtps

rsqrtss rsqrtps

maxss maxps

minss minps

2021/1/13, 10:21SSE

Page 3 of 8http://www.songho.ca/misc/sse/sse.html

Shuffle Instruction
shufps requires 2 operands and 1 mask. shufps selects 2 elements from each operand (register) based on the mask. 2 elements
from the first operand are copied to the lower 2 elements in destination register and 2 elements from the second operand are copied
to the higher 2 elements in the destination register.

Using shufps instruction, you can shuffle any 4 data elements with any order. The frequent usages of shufps are broadcast, swap
and rotate.

Broadcast
It copies all 4 fields with a single data element. The possible masks are

00h: Broadcast the least significant data element
55h: Broadcast the second data element
AAh: Broadcast the third data element
FFh: Broadcast the most significant data element

Swap
This instruction switches the order of data elements reverse with 1Bh (00011011b) mask.

Rotate
It performs left or right rotation of data elements. Use 93h (10010011b) to shift data to left direction and the most significant
data element is moved to the least significant position. Use 39h (00111001b) to shift data to right and the least significant data
element is moved to the most significant position.

2021/1/13, 10:21SSE

Page 4 of 8http://www.songho.ca/misc/sse/sse.html

Unpack
unpcklps copies and interleaves the 2 lower elements from each of the 2 operands. unpckhps copies and interleaves the 2 higher
elements from each of the 2 operands into the destination register.

Comparison Instructions
The comparison instructions compare 2 operands and set true (all 1s) or false (all 0s) into destination register. Source operand can
be an xmm register or memory, but the destination must be an xmm register.

Condition Scalar Operation Packed Operation

x = y, x ≠ y cmpeqss, cmpneqss cmpeqps, cmpneqps

x < y, x ≮ y cmpltss, cmpnltss cmpltps, cmpnltps

x ≤ y, x ≰ y cmpless, cmpnless cmpleps, cmpnleps

2021/1/13, 10:21SSE

Page 5 of 8http://www.songho.ca/misc/sse/sse.html

Bitwise Logical Instructions
Logical instructions perform bitwise logical operation on packed floating-point elements. The typical usages are negating numbers
and converting to absolute values.

Operation Instruction

AND andps

OR orps

XOR xorps

AND NOT andnps

Absolute Value
To perform absolute value operation, store 0 at the most significant bit (sign bit) and 1s at the rest bits in source register. Then
perform AND operation: number & 7FFFFFFFh.

Negate
To perform negating, store 1 at the most significant bit and 0s at the rest bits. Then perform XOR operation: number ^

2021/1/13, 10:21SSE

Page 6 of 8http://www.songho.ca/misc/sse/sse.html

8000000h.

Conversion
Conversion instructions convert from floating-point number to integer or vise versa.

Conversion Scalar Operation Packed Operation

Float to integer with rounding cvtss2si cvtps2pi

Float to integer with truncation cvttss2si cvttps2pi

Integer to float cvtsi2ss cvtpi2ps

The packed operations, cvtps2pi, cvttps2pi and cvtpi2ps convert 2 numbers in parallel, not 4 because MMX registers
(mm0~mm7) are 64-bit long (2x32-bit). Therefore, two upper elements in XMM registers are not used in conversion.

Streaming memory Instructions
SSE lets read-miss latency overlap execution via the use of prefetching, and it allowes write-miss latency to be reduced by
overlapping execution via streaming stores.

Prefetch Instructions
The prefetch instructions provide cache hints to fetch data to the L1 and/or L2 cache before the program actually needs the
data. This minimizes the data access latency. These instructions are executed asynchronously, therefore, program executions
are not stalled while prefetching.

prefetcht0: move the data from memory to L1 and L2 caches using t0 hint.

2021/1/13, 10:21SSE

Page 7 of 8http://www.songho.ca/misc/sse/sse.html

prefetcht1: move the data from memory to L2 cache using t1 hint.
prefetchnta: move non-temporal aligned data from memory to L1 cache directly (bypass L2).

Note that AMD athlonXP, Intel Pentium4 or higher CPUs include automatic cache prefetching, therefore, it is not necessary to
call these instructions manually in your code.

Streaming Store Instructions
Streaming store move instructions store non-temporal data directly to memory without updating the cache. This minimizes
cache pollution and unnecessary bus bandwidth between cache and XMM registers because it does not write-allocate on a
write miss.

Non-temporal means the data are accessed irregularly at long intervals (referenced once and not reused in immediate future) ,
for example, vertex data in 3D graphics are re-generated every frame. Write-allocate means that data write into the cache
when cache miss occurs.

movntps: move 4 of non-temporal floating-point elements from XMM register to memory directly and bypasses the cache. The
memory address must be aligned 16-byte boundaries.

movntq: move non-temporal quadword (2 integers, 4 shorts or 8 chars) from XMM register to memory and bypasses the
cache.

movntps [edi], xmm0

movntq [edi], mm0

Store Fence
sfence guarantees that the data of any store instructions earlier than sfence instruction will be written to memory before any
subsequent store instruction.

The following inline assembly example shows copying 4 float data (16-byte block) at once from source to destination array.

// move 4 floats (16-bytes) at once
__asm {
 mov ecx, count // # of float data
 chr ecx, 2 // # of 16-byte blocks (4 floats)
 mov edi, dst // dst pointer
 mov esi, src // src pointer

loop1:
 movaps xmm0, [esi] // get from src
 movaps [edi], xmm0 // put to dst

 add esi, 16
 add edi, 16

 dec ecx // next
 jnz loop1
}

Detecting SSE support
cpuid instruction can be used whether the processor supports SSE or not. Most x86 processors support cpuid instruction
nowadays, which returns CPU information and supported features. In order to determine your CPU supports cpuid instruction, try to
toggle(modify) bit 21 in EFLAGS. If bit 21 can be toggled, cpuid can be called.

Calling cpuid with eax=01h returns standard feature flags to the edx register. SSE is supported if bit 25 (26th bit from the least
significant bit) of edx register is 1. In addition, bit-26 is for SSE2 support and bit-23 is for MMX support.

This is a very simple program to detect SSE support and other features: cpuid_msvc.zip.
(Note that this program uses MSVC specific inline assembly codes in it.)

Example of Inline Assembly
The following program is an example of SSE usages in MSVC inline assembly. It includes example codes of all above SSE
instructions.

http://www.songho.ca/misc/sse/files/cpuid_msvc.zip

2021/1/13, 10:21SSE

Page 8 of 8http://www.songho.ca/misc/sse/sse.html

© 2005 - 2020 Song Ho Ahn (안성호)

Download the source and binary: sse_msvc.zip

←Back

mailto:song.ahn@gmail.com
https://validator.w3.org/check?uri=referer
http://www.songho.ca/misc/sse/files/sse_msvc.zip
http://www.songho.ca/misc/index.html

