Of bitpacking with or without SSE3 2021/1/14 T44:30

Of bitpacking with or without SSE3

PAUL

MASUREL For those who came from reddit and are not familiar with tantivy. tantivy is a search engine library

for Rust. It is strongly inspired by lucene.

about This blog post might interest three type of readers.

posts people interested in tantivy: You'll learn how tantivy uses SIMD instructions to
decode posting lists, and what happens on platform where the relevant instruction set
is not available.

« rustaceans who would like to hear a good SIMD in rust story.

« lucene core devs (yeah it is a very select club) who might be interested in a possible
(unconfirmed) optimization opportunity.

Depending on the category you belong to, you may want to skip parts of this blog post. Go
ahead, I won’t be offended.

e Integer compression

Full text search engines sequentially read ! long lists of sorted document ids. In tantivy and
in Lucene, these [DocId)s are represented as 32-bits integers. 32-bits may sound a little small,
but since [DocIds are local to a segment of the index, and an index can have more than one

segment, both tantivy and lucene can handle indices exceeding the 4 billions documents.

It is important to compress this data in a compact way, and in a way that makes
uncompressing as fast as possible. The best algorithms typically clock at >4 billions
integers/s. At this speed, depending on your architecture, you can actually uncompress

integers slightly faster than your memory bandwidth (16GB/s) limit.

In comparison, a general compression scheme that optimizes for decompression speed like

LZ4 will typically decompress 1 billion integer per second.

Compression schemes

There is a wealth of integer compression algorithms, and they typically offer a different
trade-off between decompression/compression speed and the compression rate.
TurboPFor’s README offers a comprehensive benchmark of the most popular compression

format. The data shown in the graph below was taken from there.

https://fulmicoton.com/posts/bitpacking/ m3: 1/10

https://github.com/tantivy-search/tantivy
https://github.com/powturbo/TurboPFor
https://fulmicoton.com/
https://fulmicoton.com/
https://fulmicoton.com/about/
https://fulmicoton.com/
https://fulmicoton.com/atom.xml
https://twitter.com/fulmicoton
https://jp.linkedin.com/in/fulmicoton
https://plus.google.com/106830395024961735687

Of bitpacking with or without SSE3 2021/1/14 T44:30

Average num bits per integer
Let’s walk around this chart together.

Ideally you would want to appear on the top left corner of this graph but this does not tell

the entire story. Different compression algorithm families have different usages.

The scheme you see on the left (to the exception of Elias Fano?) typically require to
compress and decompress integers in blocks. Tantivy uses SIMDPack128 for instance,

which works on blocks of 128 integers.

The scheme you are seeing on the right side are typically variable byte schemes. Algorithm
in that family represent each integer over 1, 2, 3, 4, or 5 bytes. They do not compress as well
especially for very small integers. On the other hand, they do not require to decompress

entire blocks at a time.

The compression implementations at the top of the chart use SIMD instructions... As a
result, they are unfortunately not usable in Lucene as Java does not support SIMD
instructions. But we'll see at the end of this blog post, that there might be some interesting

workaround for Java developers.

Bitpacking

The format used by tantivy is a pure rust reimplementation of simdcomp from Daniel
Lemire. It is a SSE3 implementation of delta-encoding + bitpacking. But what are delta-

encoding and bitpacking exactly?

https://fulmicoton.com/posts/bitpacking/ mas: 2/10

https://github.com/lemire/simdcomp
https://lemire.me/blog/

Of bitpacking with or without SSE3 2021/1/14 T4 4:30

Bitpacking relies on the idea that the integers you are trying to compress are small. Delta-
encoding consists in replacing your sorted list of integers by the difference between two

consecutive integers.

(1, 3, 7, 8, 13, ...|for instance, becomes (1, 2, 4, 1, 5, ...}

Bit packing then consists in identifying the minimum number of bits k required to represent
all of the integers in a pack and then concatenate their lowest k-bits. For instance, in the

previous example, the highest number is 5. It requires 3 bits to be represented.

Our bitpacked block for (1, 2, 4, 1, 5, ...|becomes:[100 010 001 100 101 ...|.

We typically want to make sure the size of our compressed block is a nice rounded number

of 32-bit words. Regardless of the bitwidth, using blocks of a multiple of 32 elements should

do the trick. 3. The size of the blocks is not just a matter of arithmetics. We also need to
prepend our encoded block by the bitwidth used to encode it. Tantivy is not very smart

about that and burns an entire byte for this, while 6 bits (or 5 if you forbid the value 0)

would have been sufficient*. If our blocks are too small we risk using too much space on
reencoding the bitwidth needlessly. If our blocks are too large, the average bitwidth used
will be larger.

Both Lucene and tantivy use blocks of 128 elements, but let’s stick to blocks of 32 elements

for the moment.
We will also forget about delta-encoding and focus on bitpacking.

A simple implementation of bitpacking in pseudo-code might look like this.

use
use
fn pack_len -
* as /
pub fn bitpack & mut &mut
assert_eq! . len pack_len

// We will use a "u32" as a mini buffer of 32 bits.
// We accumulate bits in it until capacity, at which point we just copy this
// mini buffer to compressed.

let mut =
let mut = //< number of bits written in the mini_buffer.
for
let = -
match Lcmp (&
=>
// Plenty of room remaining in our mini buffer.
= <<
+=
=>
= <<

// We have completed our minibuffer exactly.

https://fulmicoton.com/posts/bitpacking/ mfg: 3/10

Of bitpacking with or without SSE3 2021/1/14 T4 4:30

// Let's write it to “compressed’.
.copy_from_slice(& .to_le_bytes
= &mut

=>
= <<
// We have completed our minibuffer.
// Let's write it to "compressed’ and set the fresh mini_buffer
// with the remaining bits.
.copy_from_slice(& .to_le_bytes
= &mut

debug_assert! .1s_empty

Ok I lied... This is not pseudo-code but rust. Isn’t it very readable? In a nutshell, we
accumulate our values bit in a until saturation, at which point we flush it out.

Rince and repeat.

I haven't tested this code, so please don’t use it. The bitpacking crate contains a well-

tested efficient implementation. But we’ll get there in a second.

SIMD for the win.

Now the key idea of the SIMD version of this algorithm is very simple. Let’s use a 128 bits

SIMD register (in rust, you will find the type in [std::arch: :x86_64::__m128i)) to represents
an array of 4 32-bit ints (i.e.:[[u32; 41]) and let’s pack 4 integers at a time.

Note that the method leads to a different format than the scalar implementation we just saw
: imagine people packing 32 books in boxes. For simplification, we’ll assume each box can

fit exactly 4 books, so that 8 boxes will be required.

If only one person is accomplishing this task.

e Box #0 will contain book #0..43,
e Box #1 will contain book #4..#7,
e Box #2 will contain book #8..#11,

¢ Box N will contain book N4..(N+1)4 - 1

But if several people work together, surely things will go smoother if they work on filling
their own individual box. If they pick books from a common stack, you should end up with

the following books in the boxes.

https://fulmicoton.com/posts/bitpacking/ kg 4/10

https://github.com/tantivy-search/bitpacking

Of bitpacking with or without SSE3 2021/1/14 T44:30

On the first round, Packer #0, #1, #2, #3 will respectively pick book #0, #1, #2, #3 from the

stack.
On the second round, they will respectively pick book #4, #5, #6, #7.

Box #0 was filled by packer 0, so it will contain book #0, #4, #8, #12. That's exactly the way
things will happen in the SIMD implementation.

The implementation, a story where Rust really shined

tantivy should work on architectures that may lack the SSE3 instruction set (e.g. ARM,
WebAssembly, very old x86 CPUs), and ideally the index format should not depend on the

architecture.

It was therefore necessary for me to also implement a fallback scalar implementation that

was compatible with the SSE3 format.

Daniel Lemire’s simdcomp also has a AVX2 implementations that produces blocks of 256
integers. Tantivy does not use that, but surely it could be handy for a fellow rustaceans
some day?

Finally a good old well-optimized unrolled scalar implementation could definitely be

useful to some people right? Already, we are discussing implementing
different flavors of bitpacking.

simdcomp and Lucene generate unrolled code for differently using a python

script. Implementing and maintaining that kind of script is not an easy task... Doing it for

e ascalar implementation

e a SSE3 implementation

o ascalar fallback implementation for SSE3
o« AVX2

o ascalar fallback implementation for AVX2

sounded like a daunting challenge.

Now... Since we said the algorithm was conceptually the same for all of these
implementations, could we abstract out the bit that is the same from what is actually

different?

As we will learn in a second, using a trait to build such an abstraction for this would
require us to use const generics, and these are unfortunately not yet available in rust. For

this reason, the bitpacking crate relies on a macro.

Each bitpacking implementation gets its own module in which I simply need to define the

type they operate on, and a simple set of atomic operations.

https://fulmicoton.com/posts/bitpacking/ mfg8: 5/10

https://github.com/lemire/simdcomp
https://github.com/tantivy-search/bitpacking

Of bitpacking with or without SSE3

Here are the data types for the different format :

Implementation DataType

scalar
sse3

u32
_ m128i

scalar fixture for sse3 [u32; 4]

avx2

__m256i

scalar fixture for avx2 [u32; 8]

The simple set of operations is then :

e how to apply an OR

e how to apply an AND

o how to load a new chunk of data type

o how to store a new chunk of data type

o how to set the datatype to a scalar value.

o how to left shift how to right shift.

That's it. This is sufficient for bitpacking and bitunpacking!

For instance, the module for scalar operation will look like

mod

con

st =

type =

use
use

fn

fn

fn

fn

fn

as
as

setl -
as

right_shift_32 -
>>

left_shift_32 ->

<<

op_or -

op_and -

While the module for SSE3 will look like.

https://fulmicoton.com/posts/bitpacking/

2021/1/14 F44:30

Tifg: 6/10

Of bitpacking with or without SSE3 2021/1/14 T4 4:30

mod
const =

use as

use as
use as
use as

use as
use as
use as
use as

This is the only amount of SSE3 code required!

A single rust macro will then generate a lot of code to bitpack and bitunpack for every
single bit width from 0 to 32 included... All of this comes for free with unit tests and french

fries.

One thing though... [_mm_s11i_epi32| and [_mm_srli_epi32] requires the operand that

represents the number of bits to shift to be const.

As you may have guessed, this is where const generics would have really been helpful.
Even using macros, our little routine for bitpacking will not compile without a little bit
more of work. The number of bits in left/right bit shifts is dynamically computed and
depends on the loop iteration. Of course forcing the compiler to unroll the loop will not cut

it either. The compiler error is happening in the early steps of the compilation.

Fortunately someone made a loop unrolling macro crate called crunchy. It simply unrolls

loop of the form

for
//

This is perfect. After unroll, all our dynamic bitshift are effectively constant.

Our unpacking routine in our macro looks like this.

pub unsafe fn < > & &mut
assert! . len >= "Compressed array seems too
let mut = .as_ptr() as xconst
let mut = .as_mut_ptr() as *const
let = << _ as

https://fulmicoton.com/posts/bitpacking/ mEg: 7/10

https://crates.io/crates/crunchy

Of bitpacking with or without SSE3 2021/1/14 T4 4:30

let mask = setl(mask_scalar as 132);

let mut in_register: DataType = load_unaligned(input_ptr);
let out_register = op_and(in_register, mask);

store_unaligned(output_ptr, out_register);
output_ptr = output_ptr.add(1);

unroll! { // the loop unrolling macro
for iter in 0..31 { //< that's certainly a bummer, but it only handles
// loops starting at 0
const i: usize = iter + 1;

const inner_cursor: usize = (i x BIT_WIDTH) % 32;
const inner_capacity: usize = 32 - inner_cursor;

// LLVM will not emit the shift operand if

// “inner_cursor’ 1is 0.

let shifted_in_register = right_shift_32(in_register, inner_cursor a
let mut out_register: DataType = op_and(shifted_in_register, mask);

// We consumed our current quadruplets entirely.
// We therefore read another one.
if inner_capacity <= BIT_WIDTH && i != 31 {
input_ptr = input_ptr.add(1);
in_register = load_unaligned(input_ptr);

// This quadruplets is actually cutting one of
// our “DataType'. We need to read the next one.
if inner_capacity < BIT_WIDTH {
let shifted = left_shift_32(in_register, inner_capacity as i
let masked = op_and(shifted, mask);
out_register = op_or(out_register, masked);
b
b
store_unaligned(, out_register);
self.output_ptr = self.output_ptr.add(1);

store_unaligned(output_ptr, out_register);
output_ptr = output_ptr.add(1);

Beautiful!

What was it about this lucene performance opportunity?

Sure Lucene cannot use SSE3 instructions as they are not accessible in Java... but here is a

funky idea : what if we tried to do SIMD simply using operations on 64 bits integer.

Technically SIMD simply stands for “single instruction” doesn’t it? Well how far can we go
emulating our operations over a | [u32; 21jusing a[u64]. If we are lucky we could process

two integers at a time!

https://fulmicoton.com/posts/bitpacking/ m3: 8/10

Of bitpacking with or without SSE3

So let’s go through the operations one by one...

o bitwise AND operation. v

bitwise OR. v
set value v
store / load Vv

left/right bitshifts... Hum. This one is a bit tricky.

We want these bitshifts to stay in our little compartments with is not the default
behavior of a bitshift on [u64). A bit mask should prevent bits from leaking to the next

compartment, shouldn’t it?

Here is the implementation, I ended up with.

mod fakesimd {

const BLOCK_LEN: usize = 64;
type DataType = ub4;

fn setl(el: i32) —> DataType {
let el = el as u64;
el | el << 32

¥

use std::ptr::read_unaligned as load_unaligned;
use std::ptr::write_unaligned as store_unaligned;

fn compute_mask(num_bits: u64) -> u64 {
let mask = (1u64 << num_bits) - 1u64;
mask | (mask << 32)

fn right_shift_32(el: DataType, shift: i32) —> DataType {
let shift = shift as u64;
let mask = compute_mask(shift);
(el & !mask) >> shift

fn left_shift_32(el: DataType, shift2: i32) —> DataType {
let shift = shift2 as u64;
let mask = compute_mask(32-shift);
(el & mask) << shift

fn op_or(left: DataType, right: DataType) —> DataType {
left | right

fn op_and(left: DataType, right: DataType) —> DataType {
left & right

fn or_collapse_to_u32(accumulator: DataType) —> u32 {
let high = accumulator >> 32u64;
let low = accumulator % (1lu64 << 32);

https://fulmicoton.com/posts/bitpacking/

2021/1/14 F44:30

5 9/10

Of bitpacking with or without SSE3 2021/1/14 T44:30

as

Hurray tests are passing! Was there a performance benefit to jumping through this hoop?

Benchmark

The following benchmark have been running on my laptop which is powered by [Intel(R)

Core(TM) i5-8250U CPU @ 1.60GHz]

Here is the resultwhen compressing integer with a bitwidth of 15.

Implementation = Unpack throughput

scalar 1.48 billions integers /s
fake SIMD using u64 2.71 billions integers /s
sse3 6 billions integers / s

Can this technique be used to get faster bitpacking in Java? I have no idea. Maybe my initial
scalar implementation sucked for reasons I do not grasped? Also, I did not talk about the

integration of the deltas which is a rabbit hole of a subject in itself.

I also wonder if anyone has used this trick to get a little bit more performance on a different

problem.

But this blog post have reached a decent length, and trust me. You are probably the only

reader who read it so far.

compute the minimum bit width required for a given array, but I decided to decepitively

show only the simple stuff in this blog post.
1. And seek into, but this is not the subject of this blog post.

2. Elias Fano is very interesting too. I will try to blog about a possible cool usage of Elias

Fano in search in a future blog post. €

3. Of course, some of the possible bitwidth are not prime with 32 and may be reach

alignement before 32, but 32 has the merit to work for any bitwidth. <

4. Feel free to tell people tantivy wastes 3 bits per every 128 integers encoded at your

next cocktail party :). €

https://fulmicoton.com/posts/bitpacking/ mifg: 10/10

