
2021/1/13, 10:24JAVA and SIMD - Prestodb rocks!

Page 1 of 14https://prestodb.rocks/code/simd

PRESTODB ROCKS!

JAVA and SIMD

I have wanted to experiment with Java for a long time to find out whether or not
it can take advantage of Single Instruction, Multiple Data (SIMD) instructions to
speed up CPU-intensive computations. I found very little information while I
was researching this, so I decided to share my own findings.

What are SIMD instructions?
SIMD instructions allow the CPU to perform the same operation on multiple
values simultaneously. For example we would like to perform four
multiplications on eight values:

Normally that would require eight instructions to load values from memory into
registers and four multiplication instructions. Using SIMD instructions, the CPU
can load all four x values into the xmm0 with a single MOVUPS instruction,,
another MOVUPS to load the four y values into the xmm1 register and a single
MULPS instruction to multiply them

 z1 = x1 * y1
 z2 = x2 * y2
 z3 = x3 * y3
 z4 = x4 * y4

Projects About

9 minute read

Piotr
Nowojski
Software
engineer at
Teradata.
Contributor to
Prestodb.

Warsaw/Poland

Email

Twitter

GitHub

https://prestodb.rocks/
https://prestodb.rocks/projects
https://prestodb.rocks/about
mailto:piotr.nowojski@gmail.com
https://twitter.com/PiotrNowojski
https://github.com/pnowojski

2021/1/13, 10:24JAVA and SIMD - Prestodb rocks!

Page 2 of 14https://prestodb.rocks/code/simd

The key feature here is that this multiplication will be performed simultaneously
on all four values, which will be four times faster! Isn’t that great? :) SIMD
instructions are often called vectorized instructions, because you can think of
them as operating on vectors of values.

The first SIMD instructions in desktop/server CPUs were introduced in 1996 by
Intel’s MMX extension the Pentium processors. Afterwards those instructions
were expanded by the SSE and AVX standards. Now it is safe to assume that
almost every CPU has some level of SIMD support. Nevertheless it is important
to know whether your hardware supports SIMD operations that you want to
use. For example many instructions operating on 64bit integers were added
only in the latest AVX512 standard.

The problem
Let’s take a step back and show this problem in a real-life engineering use
case. PrestoDB, a distributed analytical SQL engine for Big Data (eg. large
datasets in HDFS clusters), often has to partition the same data using the same
columns multiple times one after another. For example to perform a distributed
hash JOIN algorithm, after reading the data from HDFS, Presto has to:

1. Distribute the rows among the worker nodes.
2. Within each worker, distribute the rows among CPU cores to further

parallelize the execution
3. Put each row in a hash table bucket.

This creates multiple layers of distributions for which we have to ensure that
rows with the same values in the key end up in the same bucket. Obviously

+-------+-------+-------+-------+
| x3 | x2 | x1 | x0 | xmm0
+-------+-------+-------+-------+
 * * * *
+-------+-------+-------+-------+
| y3 | y2 | y1 | y0 | xmm1
+-------+-------+-------+-------+
 = = = =
+-------+-------+-------+-------+
| x3*y3 | x2*y2 | x1*y1 | x0*y0 | xmm0
+-------+-------+-------+-------+

2021/1/13, 10:24JAVA and SIMD - Prestodb rocks!

Page 3 of 14https://prestodb.rocks/code/simd

Presto cannot re-use same hash value at each step of the partitioning
(otherwise only one bucket from 2. and 3. would be used). However calculating
new hashes on each step can become a bottleneck, so Presto tries to simplify
and optimize the hashing/scrambling algorithms as much as it is possible.

One trick is that in step 2., Presto computes the hash (let’s call it rawHash) and
it does not have to re-calculate a complicated hash in the next step (3.). Instead
we can re-use rawHash value by just scrambling its bits using some simple
function. For this quick scramblling Presto uses the following code:

Despite being so simple it can sometimes be the most CPU-intensive
operation. This makes getHashPosition function a perfect candidate for
vectorization, because it could be calculated simultaneously for multiple
rawHashes from consecutive rows.

Because this function uses 64 bit integers and during writing this blog I did not
have an access to any CPU supporting AVX512, I have rewritten it to version
operating on 32 bit integers:

 private static int getHashPosition(long rawHash, long mask)
 {
 rawHash ^= rawHash >>> 33;
 rawHash *= 0xff51afd7ed558ccdL;
 rawHash ^= rawHash >>> 33;
 rawHash *= 0xc4ceb9fe1a85ec53L;
 rawHash ^= rawHash >>> 33;

 return (int) (rawHash & mask);
 }

2021/1/13, 10:24JAVA and SIMD - Prestodb rocks!

Page 4 of 14https://prestodb.rocks/code/simd

Java and SIMD
As of Java 8, there is no way to use SIMD intrinsics in Java directly as can be
done in C++ or C#, for example. In gcc we can define our data type to be a
vector and perform SIMD operations directly as described in gcc
documentation.

In C# there is a similar mechanism and one can use System.Numerics.

However, Java can also generate SIMD code under some conditions. If it
detects that subsequent iterations of a loop perform independent calculations,
Java can try to vectorize such loop. Roughly speaking, instead of doing this:

Java can try to do this (some pseudo code):

 private static int getHashPosition(int rawHash, int mask)
 {
 rawHash ^= rawHash >>> 15;
 rawHash *= 0xed558ccd;
 rawHash ^= rawHash >>> 15;
 rawHash *= 0x1a85ec53;
 rawHash ^= rawHash >>> 15;

 return rawHash & mask;
 }

 for (int i = 0; i < x.length; i++) {
 z[i] = x[i] * y[i];
 }

 for (int i = 0; i < x.length; i += 4) {
 Load x[i, i+1, i+2, i+3] into xmm0
 Load y[i, i+1, i+2, i+3] into xmm1
 Multiply xmm0 * xmm1 and store result in xmm0
 Store xmm0 into z[i, i+1, i+2, i+3]
 }

2021/1/13, 10:24JAVA and SIMD - Prestodb rocks!

Page 5 of 14https://prestodb.rocks/code/simd

This optimization can be turned on/off by a JVM switch “-XX:+UseSuperWord”
which is turned ON by default.

This should work fine with the getHashPosition function. For example, we could
pre-calculate those hashes in batches and store the results in a small array.
Batches should be of a reasonable size, so that our temporary array fits into
CPU caches. In the next section let’s try if this works out.

Vectorizing loop

Simple incrementation

Let’s start with some simple loop over integer values. Our first benchmark is an
incrementation of values in an array.

 @State(Thread)
@OutputTimeUnit(NANOSECONDS)
@BenchmarkMode(AverageTime)
@Fork(value = 1, jvmArgsAppend = {
 "-XX:+UseSuperWord",
 "-XX:+UnlockDiagnosticVMOptions",
 "-XX:CompileCommand=print,*BenchmarkSIMDBlog.array1"})
@Warmup(iterations = 5)
@Measurement(iterations = 10)
public class BenchmarkSIMDBlog
{
 public static final int SIZE = 1024;

 @State(Thread)

2021/1/13, 10:24JAVA and SIMD - Prestodb rocks!

Page 6 of 14https://prestodb.rocks/code/simd

JMH is used here for micro benchmarking. Results with -XX:-UseSuperWord
and -XX:+UseSuperWord are the following:

That’s great! Four times faster. Thanks to the -

 @State(Thread)
 public static class Context
 {
 public final int[] values = new int[SIZE];
 public final int[] results = new int[SIZE];

 @Setup
 public void setup()
 {
 Random random = new Random();
 for (int i = 0; i < SIZE; i++) {
 values[i] = random.nextInt(Integer.MAX_VALUE / 32);
 }
 }
 }

 @Benchmark
 public int[] increment(Context context)
 {
 for (int i = 0; i < SIZE; i++) {
 context.results[i] = context.values[i] + 1;
 }
 return context.results;
 }
}

2021/1/13, 10:24JAVA and SIMD - Prestodb rocks!

Page 7 of 14https://prestodb.rocks/code/simd

XX:CompileCommand=print,*BenchmarkSIMDBlog.increment we can look at
the code that JIT produced for this benchmark in both versions. With
SuperWord we can easily find instructions from AVX2 extension that are
responsible for this speedup:

Hashing integers

Now we can try vectorizing our getHashPosition method by adding another
benchmark:

Again we are using integers rather than longs. Unfortunately the results are not
what one would expect.

 0x00007f7354e59638: vmovq -0xe0(%rip),%xmm0
 0x00007f7354e59640: vpunpcklqdq %xmm0,%xmm0,%xmm0
 0x00007f7354e59644: vinserti128 $0x1,%xmm0,%ymm0,%ymm0
 0x00007f7354e5964a: nopw 0x0(%rax,%rax,1)
 0x00007f7354e59650: vmovdqu 0x10(%r10,%r8,4),%ymm1
 0x00007f7354e59657: vpaddd %ymm0,%ymm1,%ymm1
 0x00007f7354e5965b: vmovdqu %ymm1,0x10(%r11,%r8,4)

 @Benchmark
 public int[] hashLoop(Context context)
 {
 for (int i = 0; i < SIZE; i++) {
 context.results[i] = getHashPosition(context.values[i], 1048575);
 }
 return context.results;
 }

 private static int getHashPosition(int rawHash, int mask)
 {
 rawHash ^= rawHash >>> 15;
 rawHash *= 0xed558ccd;
 rawHash ^= rawHash >>> 15;
 rawHash *= 0x1a85ec53;
 rawHash ^= rawHash >>> 15;

 return rawHash & mask;

2021/1/13, 10:24JAVA and SIMD - Prestodb rocks!

Page 8 of 14https://prestodb.rocks/code/simd

Output produced by JIT tells as that both hashLoop versions look exactly the
same, so for some reason Java wasn’t able to vectorize this loop. There is no
fundamental reason why it shouldn’t work. Arithmetic used in hashLoop is more
complicated, but it still could be easily translated to a sequence of SIMD
operations using only two registers. So what went wrong?

Let’s check if the reason why Java did not do the optimization is that the
method body is too big. Let’s try splitting getHashPosition into smaller
functions:

@Benchmark
 public void hashLoopPart(Context context)
 {
 for (int i = 0; i < SIZE; i++) {

2021/1/13, 10:24JAVA and SIMD - Prestodb rocks!

Page 9 of 14https://prestodb.rocks/code/simd

Simplifying the getHashPosition function by dropping two thirds of its code
allowed JIT to vectorize this smaller function. Let’s see what happens if we
implement getHashPosition as a chain of three smaller loops instead of one
larger loop

 context.results[i] = getHashPosition1(context.values[i]);
 }
 }

 private static int getHashPosition1(int rawHash)
 {
 rawHash ^= rawHash >>> 15;
 rawHash *= 0xed558ccd;

 }

2021/1/13, 10:24JAVA and SIMD - Prestodb rocks!

Page 10 of 14https://prestodb.rocks/code/simd

 @Benchmark
 public int[] hashLoopSplit(Context context)
 {
 for (int i = 0; i < SIZE; i++) {
 context.results[i] = getHashPosition1(context.values[i]);
 }

 for (int i = 0; i < SIZE; i++) {
 context.results[i] = getHashPosition2(context.results[i]);
 }

 for (int i = 0; i < SIZE; i++) {
 context.results[i] = getHashPosition3(context.results[i], 1048575);
 }

 return context.results;
 }

 private static int getHashPosition2(int rawHash)
 {
 rawHash ^= rawHash >>> 15;
 rawHash *= 0x1a85ec53;
 return rawHash;
 }

 private static int getHashPosition3(int rawHash, int mask)
 {
 rawHash ^= rawHash >>> 15;
 return rawHash & mask;
 }

2021/1/13, 10:24JAVA and SIMD - Prestodb rocks!

Page 11 of 14https://prestodb.rocks/code/simd

Bingo! We have a factor four speed up of the vectorized version over the non-
vectorized. Sacrificing some performance (~6%) by splitting the loop into three
we convinced the JVM to vectorize each of the smaller loops. This gives us a
speed up of almost four times over the original hashLoop.

C++

After presenting those results to my colleagues, they argued that maybe there
is some other underlying issue with this code that makes it impossible to
vectorize. To check this hypothesis I have rewritten the hashLoop benchmark
into C++ code. For compilation of the C++ code I have used g++ 4.8 with -O2 -
ftree-vectorize switches (-ftree-vectorize is turned on by default with -O3).

2021/1/13, 10:24JAVA and SIMD - Prestodb rocks!

Page 12 of 14https://prestodb.rocks/code/simd

Java 9

This made me wonder, whether there is some kind of switch that enables more
aggressive loop vectorization in the JVM. I have not found anything like this.
However while browsing through the JVM source code that handles the
UseSuperWord switch I have noticed that it has grown and changed a lot
between Java 8 version that I have used (Oracle’s Java 1.8.0_101) in the
above benchmarks and latest master branch. I downloaded OpenJDK’s source
code and compiled the latest Java 9 JVM to check if it’s more clever. Here are
the results:

2021/1/13, 10:24JAVA and SIMD - Prestodb rocks!

Page 13 of 14https://prestodb.rocks/code/simd

Nice! With arithmetic done on integers the latest Java version was able to fully
vectorize the getHashPosition loop without the need for the hacky splitting of
the method body.

Conclusions

First of all, one must be aware when and how SIMD instructions may help
improve performance. If the code is bottlenecked on memory access, using
SIMD instructions won’t help a bit. When arithmetic is a bottleneck of an
algorithm, it still might not be possible to use SIMD instructions. Not all
algorithms are easy to vectorize, especially if calculations are dependent on
one another.

Secondly, even if we have code that could be speeded up by using SIMD
instructions, Java doesn’t support it very well. We cannot explicitly express that
a variable is a vector of values and we cannot manually instruct the compiler to
use SIMD instructions for operations on those vectors, as it is possible in C++
or C#. We just have to rely on JIT to be able to vectorize loops. If we have a
simple tight loop, that might work, but sometimes it won’t. The loop could be too
complicated. Sometimes there might not be any loop to vectorize. Currently in
such cases Java programmers are stuck and are not able to unleash the full
potential computational power of modern CPUs. This is a shame, because at is
clearly visible in the above benchmarks, that using SIMD instructions can
speed up code multiple times with only a little bit of effort.

2021/1/13, 10:24JAVA and SIMD - Prestodb rocks!

Page 14 of 14https://prestodb.rocks/code/simd

© 2021 Prestodb rocks!

